Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Lancet ; 395(10227): 871-877, 2020 03 14.
Article in English | MEDLINE | ID: covidwho-2076860

ABSTRACT

BACKGROUND: The novel coronavirus disease 2019 (COVID-19) epidemic has spread from China to 25 countries. Local cycles of transmission have already occurred in 12 countries after case importation. In Africa, Egypt has so far confirmed one case. The management and control of COVID-19 importations heavily rely on a country's health capacity. Here we evaluate the preparedness and vulnerability of African countries against their risk of importation of COVID-19. METHODS: We used data on the volume of air travel departing from airports in the infected provinces in China and directed to Africa to estimate the risk of importation per country. We determined the country's capacity to detect and respond to cases with two indicators: preparedness, using the WHO International Health Regulations Monitoring and Evaluation Framework; and vulnerability, using the Infectious Disease Vulnerability Index. Countries were clustered according to the Chinese regions contributing most to their risk. FINDINGS: Countries with the highest importation risk (ie, Egypt, Algeria, and South Africa) have moderate to high capacity to respond to outbreaks. Countries at moderate risk (ie, Nigeria, Ethiopia, Sudan, Angola, Tanzania, Ghana, and Kenya) have variable capacity and high vulnerability. We identified three clusters of countries that share the same exposure to the risk originating from the provinces of Guangdong, Fujian, and the city of Beijing, respectively. INTERPRETATION: Many countries in Africa are stepping up their preparedness to detect and cope with COVID-19 importations. Resources, intensified surveillance, and capacity building should be urgently prioritised in countries with moderate risk that might be ill-prepared to detect imported cases and to limit onward transmission. FUNDING: EU Framework Programme for Research and Innovation Horizon 2020, Agence Nationale de la Recherche.


Subject(s)
Civil Defense , Coronavirus Infections , Epidemics/prevention & control , Health Resources , Models, Theoretical , Pneumonia, Viral , Population Surveillance , Vulnerable Populations , Africa/epidemiology , COVID-19 , China/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Health Planning , Humans , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Risk Assessment , Travel
2.
Viruses ; 14(7)2022 07 15.
Article in English | MEDLINE | ID: covidwho-1939019

ABSTRACT

RT-PCR testing data provides opportunities to explore regional and individual determinants of test positivity and surveillance infrastructure. Using Generalized Additive Models, we explored 222,515 tests of a random sample of individuals with COVID-19 compatible symptoms in the Brazilian state of Bahia during 2020. We found that age and male gender were the most significant determinants of test positivity. There was evidence of an unequal impact among socio-demographic strata, with higher positivity among those living in areas with low education levels during the first epidemic wave, followed by those living in areas with higher education levels in the second wave. Our estimated probability of testing positive after symptom onset corroborates previous reports that the probability decreases with time, more than halving by about two weeks and converging to zero by three weeks. Test positivity rates generally followed state-level reported cases, and while a single laboratory performed ~90% of tests covering ~99% of the state's area, test turn-around time generally remained below four days. This testing effort is a testimony to the Bahian surveillance capacity during public health emergencies, as previously witnessed during the recent Zika and Yellow Fever outbreaks.


Subject(s)
COVID-19 , Zika Virus Infection , Zika Virus , Brazil/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Clinical Laboratory Techniques , Delivery of Health Care , Humans , Male , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics
3.
Sci Adv ; 7(15)2021 04.
Article in English | MEDLINE | ID: covidwho-1133116

ABSTRACT

The efficacy of digital contact tracing against coronavirus disease 2019 (COVID-19) epidemic is debated: Smartphone penetration is limited in many countries, with low coverage among the elderly, the most vulnerable to COVID-19. We developed an agent-based model to precise the impact of digital contact tracing and household isolation on COVID-19 transmission. The model, calibrated on French population, integrates demographic, contact and epidemiological information to describe exposure and transmission of COVID-19. We explored realistic levels of case detection, app adoption, population immunity, and transmissibility. Assuming a reproductive ratio R = 2.6 and 50% detection of clinical cases, a ~20% app adoption reduces peak incidence by ~35%. With R = 1.7, >30% app adoption lowers the epidemic to manageable levels. Higher coverage among adults, playing a central role in COVID-19 transmission, yields an indirect benefit for the elderly. These results may inform the inclusion of digital contact tracing within a COVID-19 response plan.


Subject(s)
COVID-19/epidemiology , Contact Tracing , Privacy , SARS-CoV-2 , Smartphone , Adult , Aged , COVID-19/transmission , Humans
4.
BMC Med ; 19(1): 19, 2021 01 12.
Article in English | MEDLINE | ID: covidwho-1024366

ABSTRACT

BACKGROUND: Cross-reactivity to SARS-CoV-2 from exposure to endemic human coronaviruses (eHCoV) is gaining increasing attention as a possible driver of both protection against infection and COVID-19 severity. Here we explore the potential role of cross-reactivity induced by eHCoVs on age-specific COVID-19 severity in a mathematical model of eHCoV and SARS-CoV-2 transmission. METHODS: We use an individual-based model, calibrated to prior knowledge of eHCoV dynamics, to fully track individual histories of exposure to eHCoVs. We also model the emergent dynamics of SARS-CoV-2 and the risk of hospitalisation upon infection. RESULTS: We hypothesise that primary exposure with any eHCoV confers temporary cross-protection against severe SARS-CoV-2 infection, while life-long re-exposure to the same eHCoV diminishes cross-protection, and increases the potential for disease severity. We show numerically that our proposed mechanism can explain age patterns of COVID-19 hospitalisation in EU/EEA countries and the UK. We further show that some of the observed variation in health care capacity and testing efforts is compatible with country-specific differences in hospitalisation rates under this model. CONCLUSIONS: This study provides a "proof of possibility" for certain biological and epidemiological mechanisms that could potentially drive COVID-19-related variation across age groups. Our findings call for further research on the role of cross-reactivity to eHCoVs and highlight data interpretation challenges arising from health care capacity and SARS-CoV-2 testing.


Subject(s)
COVID-19 , Coronavirus Infections , Cross Protection/immunology , Cross Reactions/immunology , SARS-CoV-2/immunology , Age Factors , COVID-19/epidemiology , COVID-19/immunology , COVID-19/physiopathology , Coronavirus/classification , Coronavirus/immunology , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/therapy , Endemic Diseases , Hospitalization/statistics & numerical data , Humans , Immunity, Heterologous/immunology , Patient-Specific Modeling , Severity of Illness Index
5.
Euro Surveill ; 25(4)2020 01.
Article in English | MEDLINE | ID: covidwho-830182

ABSTRACT

As at 27 January 2020, 42 novel coronavirus (2019-nCoV) cases were confirmed outside China. We estimate the risk of case importation to Europe from affected areas in China via air travel. We consider travel restrictions in place, three reported cases in France, one in Germany. Estimated risk in Europe remains high. The United Kingdom, Germany and France are at highest risk. Importation from Beijing and Shanghai would lead to higher and widespread risk for Europe.


Subject(s)
Air Travel , Betacoronavirus , Coronavirus Infections , Pneumonia, Viral , Public Policy , Risk Assessment , COVID-19 , China/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Disease Outbreaks , Europe/epidemiology , Humans , Models, Theoretical , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , SARS-CoV-2
6.
PLoS Med ; 17(7): e1003193, 2020 07.
Article in English | MEDLINE | ID: covidwho-654704

ABSTRACT

BACKGROUND: In the early months of 2020, a novel coronavirus disease (COVID-19) spread rapidly from China across multiple countries worldwide. As of March 17, 2020, COVID-19 was officially declared a pandemic by the World Health Organization. We collected data on COVID-19 cases outside China during the early phase of the pandemic and used them to predict trends in importations and quantify the proportion of undetected imported cases. METHODS AND FINDINGS: Two hundred and eighty-eight cases have been confirmed out of China from January 3 to February 13, 2020. We collected and synthesized all available information on these cases from official sources and media. We analyzed importations that were successfully isolated and those leading to onward transmission. We modeled their number over time, in relation to the origin of travel (Hubei province, other Chinese provinces, other countries) and interventions. We characterized the importation timeline to assess the rapidity of isolation and epidemiologically linked clusters to estimate the rate of detection. We found a rapid exponential growth of importations from Hubei, corresponding to a doubling time of 2.8 days, combined with a slower growth from the other areas. We predicted a rebound of importations from South East Asia in the successive weeks. Time from travel to detection has considerably decreased since first importation, from 14.5 ± 5.5 days on January 5, 2020, to 6 ± 3.5 days on February 1, 2020. However, we estimated 36% of detection of imported cases. This study is restricted to the early phase of the pandemic, when China was the only large epicenter and foreign countries had not discovered extensive local transmission yet. Missing information in case history was accounted for through modeling and imputation. CONCLUSIONS: Our findings indicate that travel bans and containment strategies adopted in China were effective in reducing the exportation growth rate. However, the risk of importation was estimated to increase again from other sources in South East Asia. Surveillance and management of traveling cases represented a priority in the early phase of the epidemic. With the majority of imported cases going undetected (6 out of 10), countries experienced several undetected clusters of chains of local transmissions, fueling silent epidemics in the community. These findings become again critical to prevent second waves, now that countries have reduced their epidemic activity and progressively phase out lockdown.


Subject(s)
Coronavirus Infections/epidemiology , Models, Theoretical , Pneumonia, Viral/epidemiology , Travel , Betacoronavirus , COVID-19 , China/epidemiology , Communicable Disease Control/methods , Coronavirus Infections/transmission , Humans , Pandemics , Pneumonia, Viral/transmission , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL